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Abstract

A heuristic nonlinear creep model is used to derive the nonlinear coupled differential equations of motion of a high-

speed railway vehicle traveling on a curved track. The vehicle dynamics are modeled using a 21 degree-of-freedom

(21-DOF) system which takes account of the lateral displacement and yaw angle of each wheelset, the lateral displacement,

vertical displacement, roll angle and yaw angle of the truck frames, and the lateral displacement, vertical displacement, roll

angle, pitch angle and yaw angle of the car body. To analyze the respective effects of the major system parameters on the

vehicle dynamics, the 21-DOF system is reduced to 20-DOF, 14-DOF and 6-DOF models, respectively, by excluding

designated subsets of the system parameters. The validity of the analytical models and the numerical solution procedure is

confirmed by comparing the result obtained using the 6-DOF model for the critical velocity of a railway vehicle traveling

on a tangent track with the solution presented in the literature. In general, the results obtained in this study show that the

critical hunting speed derived using the 6-DOF or 14-DOF model is generally higher than that evaluated using the 20-DOF

model. In addition, the critical hunting speed evaluated via the heuristic nonlinear creep model is lower than that derived

using a linear creep model.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

With the advent of high-speed passenger trains in many countries around the world, the problem of
achieving a comfortable high-speed operation without hunting instability has attracted significant interest in
recent years. The literature contains many investigations into the dynamic stability of railway trucks running
on curved tracks [1–5]. In these studies, the trucks are generally modeled as a six degree-of-freedom (6-DOF)
system, comprising the lateral displacements and yaw angles of the front and rear wheelsets and the truck
frame, respectively. In addition, many researchers have applied linear creep models with various DOF to
analyze the curving performance and stability of railway vehicles and articulated train sets. For example, Bell
et al. [6] studied the curving mechanics and steady-state curving performance of a generic railway vehicle,
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

a half of track gauge
b1 half of primary yaw spring arm and

primary yaw damping arm
b1 half of primary vertical spring arm and

primary vertical damping arm
b2 half of secondary longitudinal spring arm

and secondary vertical spring arm
b3 half of secondary longitudinal damping

arm and secondary vertical damping arm
Cpx yaw damping of primary suspension
Cpy lateral damping of primary suspension
Cpz vertical damping of primary suspension
Csx yaw damping of secondary suspension
Csy lateral damping of secondary suspension
Csz vertical damping of secondary suspen-

sion
f 11 lateral creep force coefficient
f 12 lateral/spin creep force coefficient
f 22 spin creep force coefficient
f 33 longitudinal creep force coefficient
Fkxij linear creep force acting in longitudinal

direction on left and right wheels in front
and rear wheelsets

F�kxij linear creep force acting in longitudinal
direction on left and right wheels in front
and rear wheelsets as computed using
Kalker’s linear theory

Fn
kxij nonlinear creep force acting in x-direc-

tion on left and right wheels in front and
rear wheelsets

Fkyij linear creep force acting in lateral direc-
tion on left and right wheels in front and
rear wheelsets

F�kyij linear creep force acting in lateral direc-
tion on left and right wheels in front and
rear wheelsets as computed using Kalk-
er’s linear theory

Fn
kyij nonlinear creep force acting in y-direc-

tion on left and right wheels in front and
rear wheelsets

Fsyc suspension force acting in lateral direc-
tion on half car body

Fsyij suspension force acting in lateral direc-
tion on front and rear wheelsets

Fsyti suspension force acting in lateral direc-
tion on front and rear truck frames

Fszc suspension force acting in vertical direc-
tion on car body

Fszti suspension force acting in vertical direc-
tion on front and rear truck frames

h height of external weight above center of
gravity of wheelset

hc vertical distance from wheelset center of
gravity to car body

hT vertical distance from wheelset center of
gravity to secondary suspension

i ¼ 1, 2 indices denoting front and rear of truck,
respectively

Icx roll moment of inertia of car body
Icy pitch moment of inertia of car body
Icz yaw moment of inertia of car body
Itx roll moment of inertia of truck frame
Itz yaw moment of inertia of truck frame
Iwx roll moment of inertia of wheelset
Iwy spin moment of inertia of wheelset
Iwz yaw moment of inertia of wheelset
j ¼ 1, 2 indices denoting front and rear wheelsets,

respectively
k ¼ L, R indices denoting left and right wheels,

respectively
Kpx longitudinal stiffness of primary suspen-

sion
Kpy lateral stiffness of primary suspension
Kpz vertical stiffness of primary suspension
Ksx longitudinal stiffness of secondary sus-

pension
Ksy lateral stiffness of secondary suspension
Ksz vertical stiffness of secondary suspension
L1 half of primary lateral spring arm
L2 half of primary lateral damping arm
Lc longitudinal distance from wheelset cen-

ter of gravity to car body
mc car body mass
mt truck frame mass
mw wheelset mass
Mkxij linear creep moment acting in longitudi-

nal direction on left and right wheels in
front and rear wheelsets

Mkzij linear creep moment acting in vertical
direction on left and right wheels in front
and rear wheelsets

M�
kzij linear creep moment acting in vertical

direction on left and right wheels in front
and rear wheelsets as computed using
Kalker’s linear theory

Mn
kzij nonlinear creep moment acting in z-

direction on left and right wheels in front
and rear wheelsets
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Msxc suspension moment acting in longitudi-
nal direction on car body

Msxti suspension moment acting in longitudi-
nal direction on front and rear truck
frames

Msyc suspension moment acting in lateral
direction on car body

Mszc suspension moment acting in vertical
direction on car body

Mszij suspension moment acting in vertical
direction on front and rear wheelsets

Mszti suspension moment acting in vertical
direction on front and rear truck frames

N normal force acting on wheelset in
equilibrium state

NLyij normal force acting in lateral direction
on left wheel in front and rear wheelsets

NLzij normal force acting in vertical direction
on left wheel in front and rear wheelsets

NRyij normal force acting in lateral
direction on right wheel in front and rear
wheelsets

NRzij normal force acting in vertical direction
on right wheel in front and rear wheelsets

rL rolling radius of left wheel
rR rolling radius of right wheel
r0 nominal rolling radius of wheelset
R radius of curvature of track
RLxij x component of position vector on left

wheel in front and rear wheelsets
RLyij y component of position vector on left

wheel in front and rear wheelsets
RRxij x component of position vector on right

wheel in front and rear wheelsets

RRyij y component of position vector on right
wheel in front and rear wheelsets

t time
V forward speed of truck
V cr critical hunting speed
W axle load
W ext external load
x, y, z longitudinal, lateral and vertical coordi-

nates, respectively
yc lateral displacement of car body
yti lateral displacement of front and rear

truck frames
ywij lateral displacement of front and rear

wheelsets
zc vertical displacement of car body
zti vertical displacement of front and rear

truck frames
aij saturation constant in nonlinear creep

force model for front and rear wheelsets
bij nonlinearity constant in nonlinear creep

force model for front and rear wheelsets
bkij nonlinearity constant in nonlinear creep

force model for left and right wheels in
front and rear wheelsets

dL contact angle of left wheel
dR contact angle of right wheel
l wheel conicity
yc pitch angle of car body
fc roll angle of car body
fse superelevation angle of curved track
fti roll angle of front and rear truck frames
cc yaw angle of car body
cti yaw angle of front and rear truck frames
cwij yaw angle of front and rear wheelsets
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while Ahmed et al. [7] performed computer simulations based on Kalker’s linear theory to analyze the curving
performance of the French TGV system. Wickens [8] analyzed the curving performance of the vehicle
including the unsymmetric truck a symmetric railway vehicle with two unsymmetric two-axle bogies and
showed that a perfect steering capability could be achieved by utilizing passive suspension elements in place of
conventional linkage systems. However, in Refs. [6–8], the mass of the truck frame was neglected, and thus the
dynamic stability of truck system cannot be discussed. Bell and Horak [9] showed that forced-steering railway
vehicles have a better curve negotiation capability than conventional and self-steering radial trucks, but
experience kinematic instabilities and significantly lower critical speeds for low wheel conicities and creep
coefficients, respectively.

In practice, the parameters governing the dynamics of a HSR vehicle are nonlinear rather than linear, and
thus the linear creep models utilized in the studies above are liable to a certain degree of error. Zboinski [10,11]
presented a series of studies in which he examined the dynamics of a railway vehicle during motion along a
curved track utilizing quasi-statistical and dynamical approaches, respectively, and examined the practical
significance of considering all the inertial forces when constructing the dynamic equations of motion of a
railway vehicle. Zeng and Wu [12] constructed a 17-DOF model of a HSR vehicle and utilized an efficient
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numerical method to analyze the critical speed at the Hopf bifurcation point on both straight and curved
tracks with various degrees of superelevation. Employing the nonlinear creep model evaluated via the
Chartet’s equation, Hirotsu et al. [13] derived the nonlinear dynamic equations of motion of a four axle
railway vehicle with conventional two axle bogies and performed numerical simulations to examine the
vertical and lateral forces acting on the vehicle during curving on rails with lateral irregularities. Zboinski and
Dusza [14] examined the nonlinear lateral stability of two-axle and four-axle railway vehicles during curving
with particular regard to the effects of the angle of attack, the cant deficiency and excess, and the suspension
parameters, respectively.

The nonlinear creep models utilized in Refs. [10–14] neglect the nonlinear creep moments. Moreover, the
6-DOF models in Refs. [1–5] neglect the motion of the car body and assume is mass to coincide with that of
the truck frame. In practice, however, the dynamics of a railway vehicle are highly sensitive to the car body
motion; particularly when the vehicle is traveling along a curved track. Finally, the 17-DOF model
constructed by Zeng and Wu [12] considers the lateral displacement and yaw angle of each wheelset, and the
lateral displacements, roll angles and yaw angles of the truck and car body, respectively, but neglects the
vertical displacements of the truck frames and the vertical displacement and pitch angle of the car body.
Furthermore, while the linear creep models utilized in Refs. [6–9] take into account the effects of the creep
force and the creep moment on the critical hunting speed, the effects of the suspension parameters are not
considered.

In an attempt to address the various limitations of the linear and nonlinear models discussed above, this
study develops a 21-DOF model to analyze the dynamics of a railway vehicle while moving on curved tracks.
The model includes the lateral displacement and yaw angle of each wheelset, the lateral displacement, vertical
displacement, roll angle and yaw angle of the truck frames, and the lateral displacement, vertical displacement,
roll angle, pitch angle and yaw angle of the car body. The nonlinear coupled differential equations of motion
of the vehicle are derived using a heuristic nonlinear creep model, while the critical hunting speed is evaluated
using the Lyapunov indirect method [15]. To clarify the effects of the major system parameters on the dynamic
behavior of the railway vehicle, the 21-DOF model is reduced to a 20-DOF model by excluding the nodding
motion (i.e. the pitch angle) of the car body. The 20-DOF model is then further reduced to 14-DOF and
6-DOF models by excluding specified sub-sets of the system parameters (e.g. those relating to the vertical
displacements and roll angles of the truck frames and car body, or to the vertical stiffness and vertical
damping of the secondary suspension, for example). The validity of the analytical modeling approach and
numerical solution procedure is confirmed by comparing the results obtained for the critical speed of a railway
vehicle modeled as a 6-DOF system with the results presented in the literature. The results obtained for the
critical hunting speed using the proposed nonlinear creep model with various DOFs are then compared and
contrasted with those derived using a linear creep model with an equivalent DOF.

2. Differential equations of motion

2.1. Governing equations of motion of truck frame and car body

Consider a railway vehicle moving on a curved track with radius R (see Figs. 1 and 2). The governing
equations of motion for the lateral displacement yti, vertical displacement zti, roll angle fti and yaw angle cti

of the truck frame are given, respectively, by

mt €yti ¼ Fsyti þ
V2

gR
� fse

� �
mtg, (1)

mt €zti ¼ F szti � 1þ
V2

gR
fse

� �
mtg, (2)

Itx
€fti ¼Msxti, (3)

I tz
€cti ¼Mszti. (4)
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Fig. 1. Car body model.
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Meanwhile, the governing equations of motion for the lateral displacement yc, vertical displacement zc, pitch
angle yc, roll angle fc, and yaw angle cc of the car body are given by

mc €yc ¼ Fsyc þ
V 2

gR
� fse

� �
mcg, (5)
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Fig. 2. Free body diagram of single wheelset.
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mc €zc ¼ F szc � 1þ
V2

gR
fse

� �
mcg, (6)

Icx
€fc ¼Msxc, (7)

Icy
€yc ¼Msyc, (8)

Icz
€cc ¼Mszc, (9)

where V is the speed of the railway vehicle in the forward direction and fse the superelevation angle of the
curved track. Note that subscripts i ¼ 1, 2 in Eqs. (1)–(9) indicate that the corresponding physical properties
relate to the front and rear of the truck, respectively. Note also that the physical quantities F syc, Fszc, Fsyti,
Fszti, Msxc, Msyc, Mszc, Msxti and Mszti are defined in the nomenclature. Finally, the double dots above the
quantities on the left-hand side of Eqs. (1)–(9) denote differentiation with respect to the time variable t.

2.2. Governing equations of motion of front and rear wheelsets

Applying the notations defined by Dukkipati and Garg [16], and taking the inertia forces and heuristic
nonlinear creep forces and moments into consideration, the governing coupled differential equations of
motion for the lateral displacement ywij and yaw angle cwij of the wheelsets are given by

mw €ywij �
V 2

R

� �
¼ F n

Lyijðywij ; _ywij ;cwij ;
_cwijÞ þ F n

Ryijðywij ; _ywij ;cwij ;
_cwijÞ

þNLyij þNRyij þ F syij þ
V2

gR
W ext � ðW ext þmwgÞfse, (10)

Iwz
€cwij ¼ � Iwy

V

r0
_fwij þ RRxijF

n
Ryijðywij ; _ywij ;cwij ; _cwijÞ � RRyijF

n
Rxijðywij ; _ywij ;cwij ; _cwijÞ

þ RLxijF
n
Lyijðywij ; _ywij ;cwij ;

_cwijÞ � RLyijF
n
Lxijðywij ; _ywij ;cwij ;

_cwijÞ

þ ðRRxijNRyij þ RLxijNLyijÞ þMn
Lzijðywij ; _ywij ;cwij ;

_cwijÞ þMn
Rzijðywij ; _ywij ;cwij ;

_cwijÞ þMszij , (11)

where the subscripts j ¼ 1, 2 indicate that the corresponding properties relate to the front and rear wheelsets,

respectively. Furthermore, fwij is the roll angle of the wheelset, and F n
Rxijðywij ; _ywij ;cwij ; _cwijÞ,

Fn
Ryijðywij ; _ywij ;cwij ; _cwijÞ, Fn

Lxijðywij ; _ywij ;cwij ; _cwijÞ and F n
Lyijðywij ; _ywij ;cwij ; _cwijÞ are the x- and y-direction
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components of the nonlinear creep forces acting on the right and left wheels in the front and rear wheelsets,

respectively. Finally, Mn
Rzijðywij ; _ywij ;cwij ;

_cwijÞ and Mn
Lzijðywij ; _ywij ;cwij ;

_cwijÞ are the nonlinear creep moments

acting in the z-direction on the right and left wheels in each wheelset, respectively. Note that the remaining
physical parameters, i.e. F syij, Mszij , NLyijNRyij, RLxij, RLyij , RRxij and RRyij , are fully defined in the

nomenclature.
In this study, the dynamics of the railway vehicle are analyzed using a heuristic nonlinear creep model which

combines Kalker’s linear creep theory [16] with a creep force saturation representation. The nonlinear creep
forces in the x- and y-directions and the nonlinear creep moments in the vertical direction are given as (Horak
and Wormley [17])

Fn
kxijðywij ; _ywij ;cwij ; _cwijÞ ¼ aijFkxij , (12a)

Fn
kyijðywij ; _ywij ;cwij ;

_cwijÞ ¼ aijFkyij , (12b)

Mn
kzijðywij ; _ywij ;cwij ; _cwijÞ ¼ aijMkzij , (12c)

where subscripts k ¼ L, R indicate that the corresponding properties relate to the left and right wheels,
respectively. Note that the terms F kxij , F kyij and Mkzij in Eqs. (12a)–(12c) indicate the linear creep forces and
creep moments, respectively.

In the present analysis, an assumption is made that the roll and yaw angles of the two wheelsets are small,
and thus the linear creep forces and linear creep moments with respect to the left and right wheels are given by

FLxij ¼ F�Lxij � F�Lyijcwij, (13a)

F Lyij ¼ F�Lxijcwij þ F�Lyij, (13b)

MLzij ¼M�
Lzij, (13c)

F Rxij ¼ F�Rxij � F�Ryijcwij , (14a)

FRyij ¼ F�Rxijcwij þ F�Ryij , (14b)

MRzij ¼M�
Rzij , (14c)

where F�kxij , F�kyij and M�
kyij are the linear creep forces and linear creep moments given by Kalker’s linear

theory, and have the forms

F�Lxij ¼ �
f 33

V
V 1þ

a

R
�

rL

r0

� �
� a _cwij

� �
, (15a)

F�Lyij ¼ �
f 11

V
ð _ywij þ rL

_fwij � VcwijÞ �
f 12

V
_cwij �

V

R
�

V

r0
dL

� �
, (15b)

M�
Lzij ¼

f 12

V
½ _ywij � Vcwij þ rL

_fwij� �
f 22

V
_cwij �

V

R
�

V

r0
dL

� �
, (15c)

F�Rxij ¼ �
f 33

V
V 1�

a

R
�

rR

r0

� �
þ a _cwij

� �
, (16a)

F�Ryij ¼ �
f 11

V
ð _ywij þ rR

_fwij � VcwijÞ �
f 12

V
_cwij �

V

R
þ

V

r0
dR

� �
, (16b)

M�
Rzij ¼

f 12

V
½ _ywij � Vcwij þ rR

_fwij � �
f 12

V
_cwij �

V

R
þ

V

r0
dR

� �
. (16c)
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The saturation constant aij in the nonlinear creep formalisms given in Eqs. (12a)–(12c) is defined as (Horak
and Wormley [17])

aij ¼

1

bij

bij �
1

3
b2ij þ

1

27
b3ij

� �
for bijp3

1

bij

for bijX3

8>>><
>>>:

, (17)

where bij is nonlinearity constant in the nonlinear creep mode and given by

bij ¼
bRij þ bLij

2
(18)

and

bkij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF�kxijÞ

2
þ ðF�kyijÞ

2
q

mN
. (19)

Fig. 3 illustrates the position of the wheelset relative to the curved track. As shown, the contact between the
wheel and the track is assumed to be confined to the tread region, i.e. no contact occurs between the left or
right wheel flanges and the rail at any point during curving. Assuming that the vehicle remains in a state of
static equilibrium as it negotiates the curve, the normal forces acting on the wheelsets in the vertical direction
remain constant. Therefore, assuming a simplified truck model with conical wheels, the constant values are
taken for Kalker’s coefficients [18]. Therefore, the creep coefficients f11, f12, f22 and f33 in Kalker’s linear creep
model can also be taken as constants since they vary as a function of the normal force between the wheels and
the rails in the vertical direction and the radius of curvature of the wheels at their points of contact with
the rails.

Assuming static force equilibrium in the vertical direction, the normal forces acting on the left and right
wheels in the vertical direction, i.e. NLzij and NRzij , can be obtained as

NLzij ¼ NRzij ¼
1

2
W ext þmwgþ

V 2W ext

gR
fse

� �
. (20)

Meanwhile, the normal forces acting on the left and right wheels in the lateral direction, i.e. NLyij and NRyij,
are given as

NLyij ¼ �NLzij tanðdL þ fwijÞ � �
1

2
W ext þmwgþ

V2W ext

gR
fse

� �
ðdL þ fwijÞ, (21)

NRyij ¼ NRzi tanðdR � fwijÞ �
1

2
W ext þmwgþ

V2W ext

gR
fse

� �
ðdR � fwijÞ. (22)
Fig. 3. Position of wheelset relative to track during curving.
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Assuming that the lateral displacements DL and DR of the wheel–rail contact points from their equilibrium
positions are small, the position vectors of the contact points are given by

RRxij ¼ acwij , (23a)

RRyij ¼ �aþ rRfwij , (23b)

RRzij ¼ �afwij � rR, (23c)

RLxij ¼ �acwij, (23d)

RLyij ¼ aþ rLfwij , (23e)

RLzij ¼ afwij � rL. (23f)

From Eqs. (20)–(23), the normal force in the vertical direction, RRxijNRyij þ RLxijNLyij, the summation
moments in the longitudinal direction, RRyijNRzij þ RLyijNLzij and �RRzijNRyij � RLzijNLyij , can be obtained.

From Fig. 1, it can be shown that the suspension forces acting on the wheelsets in the lateral direction, F syij ,
the suspension moments acting on the wheelsets in the vertical direction, Mszij , the suspension forces acting on
the truck frames in the lateral direction, Fsyti, the suspension forces acting on the truck frames in the vertical
direction F szti, the suspension moments acting on the truck frames in the longitudinal direction, Msxti, and
the suspension moments acting on the truck frames in the vertical direction, Mszti, are given, respectively,
as follows:

Fsyij ¼ � 2Kpyywij � ð�1Þ
j2KpyL1cti þ 2Kpyyti � 2Cpy _ywij � ð�1Þ

j2CpyL2
_cti

þ 2Cpy _yti þ 2KpyhTfti þ 2CpyhT
_fti, (24)

Mszij ¼ 2Kpxb2
1cti þ 2Cpxb2

1
_cti � 2Kpxb2

1cwij � 2Cpxb2
1
_cwij , (25)

Fsyti ¼ 2Kpyywij þ 2Cpy _ywij þ ð�4Kpy � 2KsyÞyti þ ð�4Cpy � 2CsyÞ _yti þ 2KsyLccc þ 2CsyLc
_cc

þ 2Ksyyc þ 2Csy _yc þ 2Ksyðhc � hT Þfc þ 2Csyðhc � hT Þ
_fc � 4KpyhTfti � 4CpyhT

_fti, (26)

Fszti ¼ 2Kszzc þ 2Csz _zc � 2ðKsz þ 2KpzÞzti � 2ðCsz þ 2CpzÞ_zti, (27)

Msxti ¼ 2Kszb2
2fc þ 2Cszb2

3
_fc � 2Kszb2

2fti � 2Cszb2
3
_fti þ 2KpyhT þ 2Kpzb

2
1

l
a

� �� �
ywij � 4KpyhT yti

þ 2CpyhT þ 2Cpzb2
1

l
a

� �� �
_ywij � 4CpyhT _yti � 4Kpyh2

Tfti � 4Cpyh2
T
_fti � 4Kpzb

2
1fti � 4Cpzb

2
1
_fti, (28)

Mszti ¼ ð�4KpyL2
1 � 4Kpxb2

1 � 2Ksxb2
2Þcti þ ð�4CpyL2

2 � 4Cpxb2
1 � 2Csxb2

3Þ
_cti

þ 2KpyL1ywi1 þ 2CpyL2 _ywi1 þ 2Kpxb2
1cwi1 þ 2Cpxb2

1
_cwi1 � 2KpyL1ywi2 � 2CpyL2 _ywi2

þ 2Kpxb2
1cwi2 þ 2Cpxb2

1
_cwi2 þ 2Ksxb2

2cc þ 2Csxb2
3
_cc. (29)

Meanwhile, regarding the car body, the suspension forces acting in the lateral direction, Fsyc, the suspension
forces acting in the vertical direction, F szc, the suspension moments acting in the longitudinal direction, Msxc,
the suspension moments acting in the lateral direction, Msyc, and the suspension moments acting in the
vertical direction, Mszc, are given as

F syc ¼ �2Ksyð2yc � yt1 � yt2Þ � 4Ksyðhc � hT Þfc � 2Csyð2 _yc � _yt1 � _yt2Þ � 4Csyðhc � hT Þ
_fc, (30)

F szc ¼ �4Kszzc � 4Csz _zc þ 2Kszzt1 þ 2Csz _zt1 þ 2Kszzt2 þ 2Csz _zt2, (31)
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Msxc ¼ 2Kszb2
2ft1 þ 2Cszb2

3
_ft1 þ 2Kszb2

2ft2 þ 2Cszb2
3
_ft2 � 4Kszb2

2fc � 4Cszb2
3
_fc

� 4Ksyðhc � hT Þyc � 4Csyðhc � hT Þ _yc þ 2Ksyðhc � hT Þyt1 þ 2Csyðhc � hT Þ _yt1

þ 2Ksyðhc � hT Þyt2 þ 2Csyðhc � hT Þ _yt2 � 4Ksyðhc � hT Þ
2fc � 4Csyðhc � hT Þ

2 _fc

� 4Ksyðhc � hT ÞLccc � 4Csyðhc � hT ÞLc
_cc, (32)

Msyc ¼ �2Kszzt1 þ 2Kszzt2 � 4KszycLc � 2Csz _zt1 þ 2Csz _zt2 � 4Csz
_ycLc, (33)

Mszc ¼ � 4KsyccL2
c � 4Csy

_ccL2
c � 2Ksxb2

2ð2cc � ct1 � ct2Þ

� 2Csxb2
3ð2

_cc �
_ct1 �

_ct2Þ � 2KsyLcð�yt1 � yt2Þ � 2CsyLcð� _yt1 � _yt2Þ. (34)

For simplicity, it is assumed that the constraint function is linear for a conical wheel on a knife-edged rail.
Hence, the following assumptions regarding the wheel�rail geometry can be employed:

dL ¼ dR ¼ l; 1
2
ðrL � rRÞ ¼ lywij ;

1
2
ðrL þ rRÞ ¼ r0. (35)

Substituting Eqs. (12)–(23), (35) into Eqs. (10) and (11) and neglecting the higher order terms and the
influence of the vertical displacement of the wheelset axle in the midpoint position on the lateral displacements
of the left and right wheels, the following coupled nonlinear differential equations are obtained

mw €ywij �
V 2

R

� �
¼ �

2aijf 11

V
ð _ywij � VcwijÞ �

2aij f 12

V
_cwij �

V

R

� �
�

2r0aij f 11

V

l
a

� �
_ywij

� W ext þmwgþ
V2W ext

gR
fse

� �
l
a

� �
ywij � ðW ext þmwgÞfse þ

V2W ext

gR
þ F syij, (36)

Iwz
€cwij ¼ �

2alaij f 33

ro

ywij þ
2aij f 12

V
_ywij � Iwy

V

ro

�
2roaij f 12

V

� �
l
a

� �
_ywij � 2aij f 12cwij

þ W ext þmwgþ
V 2W ext

gR
fse

� �
alcwij þMszij �

2a2aij f 33

V
þ

2aij f 22

V

� �
_cwij þ

2aij

R
ða2f 33 þ f 22Þ. (37)

where aij ¼ aijðywij ; _ywij ;cwij ; _cwijÞ. The 21-DOF model of the railway vehicle is therefore given by Eqs. (1)–(9)
and (36)–(37).

2.3. Limiting studies

When aij ¼ 1, the heuristic nonlinear creep model given in Eq. (12) reduces to a linear creep model and the
nonlinear differential equations given in Eqs. (36) and (37) reduce to the governing differential equations of
motion of a wheelset moving on a curved track based on a linear creep model, i.e.

mw €ywij �
V 2

R

� �
¼ �

2f 11

V
ð _ywij � VcwijÞ �

2f 12

V
_cwij �

V

R

� �
�

2r0f 11

V

l
a

� �
_ywij

� W ext þmwgþ
V2W ext

gR
fse

� �
l
a

� �
ywij � ðW ext þmwgÞfse þ

V2W ext

gR
þ F syij, (38)
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2alf 33

ro
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2f 12

V
_ywij � Iwy

V

ro

�
2rof 12

V

� �
l
a

� �
_ywij � 2f 12cwij

þ W ext þmwgþ
V2W ext

gR
fse

� �
alcwij þMszij �

2a2f 33

V
þ

2f 22

V

� �
_cwij þ

2

R
ða2f 33 þ f 22Þ. (39)

Eqs. (1)–(9), (38) and (39) therefore represent the 21-DOF linear creep model of the railway vehicle while
traveling on a curved track. In analyzing the hunting stability of the railway vehicle, this study neglects
the nodding motion (i.e. the pitch angle) of the car body. The resulting 20-DOF nonlinear creep model for the
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railway vehicle is therefore given by Eqs. (1)–(7), (9), (36) and (37), while the equivalent linear creep model is
given by Eqs. (1)–(7), (9), (38) and (39).

In addition, neglecting the lateral displacement, vertical displacement, roll angle and yaw angle of the car
body, and the vertical displacement and roll angle of the truck frame, and assigning parameter values of
fwij ¼ lywij=a, fse ¼ 0, W ¼W ext þmwg and R ¼N, the nonlinear differential equations given above can be
further reduced to the governing differential equations of motion for wheelsets moving on tangent tracks
based on a linear creep model, i.e.

mw €ywi ¼ �
2f 11

V
_ywi þ 2f 11cwi �

2f 12

V
_cwi �W

l
a

ywi �
2rof 11

V

l
a

� �
_ywi

� 2Kpyywi � ð�1Þ
i2KpyL1ct þ 2Kpyyt � 2Cpy _ywi � ð�1Þ

i2CpyL2
_ct þ 2Cpy _yt, (40)

Iwz
€cwi ¼ �

2af 33l
ro

ywi þ
2f 12

V
_ywi þ ð�2f 12 þ alW Þcwi þ �

2a2f 33

V
�

2f 22

V

� �
_cwi

þ �
IwyV

ro

þ
2rof 12

V

� �
l
a

� �
_ywi þMszi. (41)

Furthermore, the differential equation of motion in the lateral direction for the truck frame moving on tangent
tracks simplifies to the following:

mt €yt ¼ 2Kpyyw1 þ 2Cpy _yw1 þ 2Kpyyw2 þ 2Cpy _yw2 þ ð�4Kpy � 2KsyÞyt þ ð�4Cpy � 2CsyÞ _yt. (42)

Eqs. (4) and (40)–(42) represent the 6-DOF model of the railway vehicle dynamics and are identical to those
given by Ahmadian and Yang [19].

3. Stability analysis

In this paper, the effects of the various physical parameters on the critical hunting speed of the railway
vehicle are analyzed using the Lyapunov indirect method (Vidyasager [15]) Thus, the 20-DOF nonlinear creep
model for the railway vehicle given in Eqs. (1)–(7), (9), (36) and (37) can be re-expressed as the following
system of first-order differential equations:

_xðtÞ ¼ f½xðtÞ�, (43)

where xðtÞ is a 40� 1 vector of the state variables.
For any given vehicle velocity, V, the following determinant matrix can be defined:

A ¼
qfðxÞ
qx

� �
x¼x0

, (44)

where x0 is the equilibrium point and satisfies f½x0� ¼ 0. With the matrix theory in linear algebra, Matrix A has
40 eigenvalues. The stability conditions of the dynamic railway vehicle can be evaluated by determining
whether the eigenvalues of Matrix A lie on the real or imaginary planes, respectively. If the vehicle velocity V is
low, all the eigenvalues will be located in the left half-plane, indicating that the system is stable. However,
when V is increased, if any of the eigenvalues are located on the imaginary axis, the dynamic system is judged
to be unstable. In other words, the dynamic system is regarded as unstable if any of the eigenvalues of matrix
A have a positive real part. In the present study, the problem of determining the maximum allowable velocity
of the railway vehicle (i.e. the critical hunting speed, Vcr) is solved as follows: First, an initial vehicle speed V is
assigned. Then, the equilibrium point x0 is found by using Newton’s root finding method to determine the root
of f½x� ¼ 0. The equilibrium point x0 is then substituted into Eq. (44) and matrix A is constructed. The
eigenvalues of matrix A are then obtained. The stability or otherwise of the railway vehicle at the specified
value of the forward velocity, V, is then determined by examining the sign of the real part of each eigenvalue.
Assuming that the system is found to be stable, the velocity is increased and the solution procedure is repeated.
This process is repeated iteratively until the sign of one of the eigenvalues of matrix A is found to have a non-
positive real part. The corresponding value of V is then taken as the critical hunting speed of the vehicle.
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4. Numerical results

To confirm the validity of the analytical models developed in Section 2 and the numerical method presented
in Section 3, the critical hunting speed of a railway vehicle was compared with the equivalent solution
presented by Ahmadian and Yang [19]. Note that the vehicle was assumed to travel on a tangent track and its
dynamics were modeled using the reduced 6-DOF model presented in Section 2.3. The critical hunting speed
was determined to be 118 km/h, i.e. identical to that presented in Ref. [19]. Thus, the validity of the proposed
approach was confirmed.

As discussed in Section 2.3, in analyzing the hunting stability of the railway vehicle, the current analysis
neglects the pitch angle motion of the car body. Therefore, the full 21-DOF model of the vehicle dynamics is
reduced to a 20-DOF model. In addition, a simplified 6-DOF model is obtained by neglecting the lateral
displacement, vertical displacement, roll angle and yaw angle of the car body, and the vertical displacement
and roll angle of the truck frame (see Section 2.3). Finally, a 14-DOF model is constructed by removing the
bounce and roll motions of the truck and car body from the 20-DOF model. Compared to the 6-DOF and
14-DOF models, the 20-DOF model includes the vertical stiffness and vertical damping properties of the
secondary suspension. Thus, the 20-DOF model allows useful insights to be obtained into the respective effects
of these parameters on the dynamics of the railway vehicle on a curved track, and therefore addresses a
perceived lack in the present literature. (Note that the contents of each of the DOF models are summarized in
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Table 1

Components of each DOF model.

Vehicle system Lateral displacement Vertical displacement Roll angle Pitch angle Yaw angle

6 DOF ywi, yt cwi, ct

14 DOF ywij , yti, yc cwij , cti, cc

20 DOF ywij , yti, yc zti, zc fti, fc cwij , cti, cc

21 DOF ywij , yti, yc zti, zc fti, fc yc cwij , cti, cc
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Table 1.) In performing the following analyses, the various system parameters are assigned the values shown in
Appendix A (derived from Refs. [20,21]) unless stated otherwise.

From Fig. 4, one can observe that for each given speed, it corresponds to only one value of the maximum
real part of the eigenvalues at the equilibrium point. The critical hunting speed can be obtained when the
property of the maximum real part changes from negative to positive. Moreover, the system will be stable if
the maximum real part of the eigenvalues is negative. Therefore, the margin of stability for the 6-DOF,
14-DOF and 20-DOF systems can be found.

Figs. 5(a) and (b) illustrate the influence of the longitudinal stiffness of the primary suspension Kpx on the
critical hunting speed of the railway vehicle when moving on a curved track. Note that the results are
evaluated using both linear and nonlinear creep models with 6-, 14- and 20-DOF, respectively. In general, it is
seen that the critical hunting speed first increases and then decreases as the value of Kpx is increased.
Furthermore, in both figures, it is observed that the critical hunting speeds obtained using the linear creep
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model are higher than those evaluated using the nonlinear creep model with an equivalent DOF. In Fig. 5(a),
it can be seen that for both the linear and the nonlinear creep models, the critical hunting speeds obtained
using the 6-DOF system are greater than those obtained using the 20-DOF system at all values of Kpx.
Fig. 5(b) shows that the critical hunting speeds obtained using the 14-DOF system are higher than those
obtained from the 20-DOF system for most values of Kpx for both creep models. However, at higher values of
Kpx, the critical hunting speeds obtained using the 20-DOF system are higher than those obtained using the
14-DOF system.

The difference in value of the critical hunting speeds obtained using the linear and nonlinear creep models,
respectively, reflects the differing assumptions made in Kalker’s linear creep model [16] and the current
heuristic nonlinear creep model. For example, in Kalker’s linear model, it is assumed that for very small
creepages, the area of slip is so small that its influence can be neglected, and hence the adhesion zone is
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assumed to cover the entire area of contact. However, the heuristic nonlinear creep model is based on Johnson
and Vermeulen’s theory [16] which states that the contact area is actually divided into two regions, namely the
slip region and the adhesion region. The occurrence of slip in the contact area reduces the forward velocity of
the vehicle, and thus the critical hunting speeds determined using the heuristic nonlinear creep model are
generally lower than those evaluated using the linear creep model.

Fig. 6 shows the influence of the longitudinal stiffness of the primary suspension Kpx on the critical hunting
speed of the railway vehicle while traveling on tangent tracks. Note that the results are once again obtained
using linear and nonlinear creep models with 6-, 14- or 20-DOF, respectively. Fig. 6(a) shows that in the
20-DOF and 6-DOF systems, the critical hunting speeds obtained using the linear creep model are virtually
identical to those obtained using the nonlinear model. Moreover, it is evident that the critical hunting speeds
obtained from the 20-DOF model are lower than those obtained from the 6-DOF model at all values of Kpx.
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Fig. 6(b) shows that when the vehicle dynamics are modeled as a 14-DOF system, the critical hunting speeds
evaluated by the linear creep model are noticeably higher than those obtained from the nonlinear creep model
when Kpx increases beyond a certain critical value. In addition, at values of Kpx greater than 21� 105N/m, the
critical hunting speeds evaluated using the 20-DOF creep models are higher than those obtained from the
14-DOF models.

Fig. 7 shows the influence of the lateral stiffness of the primary suspension, Kpy, on the critical hunting
speed of the railway wheel when moving on a curved track. In general, the results show that irrespective of the
creep model applied or the number of DOF used to model the vehicle dynamics, the critical speed increases
with an increasing value of Kpy. In addition, the critical hunting speeds evaluated by the linear creep model are
consistently higher than those evaluated by the nonlinear creep model. Finally, for both creep models, the
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critical hunting speeds obtained from the 6-DOF and 14-DOF systems are higher than those obtained from
the 20-DOF system.

Fig. 8 illustrates the effect of the longitudinal damping of the secondary suspension, Csx, on the critical
hunting speed of the railway vehicle. In general, it is noted that the critical speed increases as the longitudinal
damping is increased. Fig. 8(a) shows that in the case of the nonlinear creep model, the critical hunting
speeds evaluated by the 6-DOF model are consistently higher than those obtained using the 20-DOF
model. However, for the linear creep model, little difference exists in the critical hunting speeds obtained
from the 6-DOF and 20-DOF systems, respectively, when Csx exceeds a critical value of approximately
5� 103N s/m. In addition, when modeling the vehicle dynamics using a 20-DOF system, the critical hunting
speeds obtained using the linear creep model are consistently higher than those obtained from the
nonlinear model. However, for the 6-DOF system, the critical hunting speeds evaluated using the nonlinear
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creep model exceed those obtained from the linear model at values of Csx greater than around 5� 103N s/m.
Referring to Fig. 8(b), it is seen that in the nonlinear analysis, the critical hunting speed evaluated using
the 20-DOF model is higher than that obtained from the 14-DOF model at all values of Csx greater
than 6� 103N s/m. However, in the case of the linear creep model, the critical hunting speeds obtained
using the 14-DOF and 20-DOF models are virtually identical at values of Csx in excess of 7� 103N s/m.
Finally, when the vehicle dynamics are modeled using the 14-DOF system, the results obtained for the critical
hunting speed using the linear creep model are consistently higher than those obtained from the nonlinear
creep model.

Fig. 9 illustrates the effect of the longitudinal stiffness of the secondary suspension, Ksx, on the critical
hunting speed, as evaluated using both the linear and the nonlinear creep models with 6, 14 and 20 DOF,



ARTICLE IN PRESS

0
100

200

300

400

500
20 DOF--nonlinear creep model

20 DOF--linear creep model

0

100

200

300

400

500
Tangent  tracks

R = 6250 m

R = 2000 m

V
ch

 (
km

/h
)

10 20 30 40 50

Csz (104 N-s/m)

V
ch

 (
km

/h
)

10 20 30 40 50

Csz (104 N-s/m)

Fig. 11. Influence of vertical damping of secondary suspension Csz on critical speed of railway vehicle as evaluated using: (a) 20-DOF

linear and nonlinear creep models and (b) 20-DOF nonlinear creep model for tracks with various radii (Kpx ¼ 9� 105 N=m,

Kpy ¼ 3:9� 105 N=m, Csx ¼ 6� 104 N s=m, Ksx ¼ 3:5� 104 N=m, Ksz ¼ 3:5� 105 N=m).

Y.-C. Cheng et al. / Journal of Sound and Vibration 324 (2009) 139–160 157
respectively. It is observed that in every case, the critical hunting speed increases monotonically with an
increasing value of Ksx. Moreover, the critical hunting speeds obtained via the linear creep model are
consistently higher than those derived from the nonlinear creep model. In addition, for both creep models, the
critical hunting speeds obtained from the 6-DOF and 14-DOF systems are higher than those obtained from
the 20-DOF system.

In general, Figs. 5–9 show that when the stability analysis is performed utilizing the nonlinear creep model,
the critical hunting speeds evaluated via the 14-DOF system are generally higher than those evaluated via the
20-DOF system. Thus, it can be concluded that the critical hunting speed of a railway vehicle moving on
curved tracks may be over estimated if the vertical displacements and roll angles of the truck frames and car
body are not taken into account.
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As discussed at the beginning of this section, neither the vertical stiffness nor the vertical damping
of the secondary suspension is considered in the 6-DOF and 14-DOF dynamic system models. A review of the
available literature reveals that the influences of these two physical parameters on the critical hunting
speed of HSR vehicles during curving have not been fully considered. Accordingly, Fig. 10(a) illustrates
the effect of the vertical stiffness of the secondary suspension, Ksz, on the critical hunting speed as
evaluated via the linear and nonlinear creep models based on the 20-DOF dynamic system. (Note that
the track is assumed to have a radius of 6250m in both cases.) The results show that for both creep
models, the critical hunting speed decreases initially with increasing Ksz and then increases. In addition, it is
observed that the critical hunting speed evaluated via the linear creep model is consistently higher than that
obtained from the nonlinear creep model. Fig. 10(b) shows that for a given value of Ksz, the critical hunting
speed increases with an increasing track radius. (Note that the results are obtained using the nonlinear creep
model.).

Fig. 11 illustrates the effect of the vertical damping of the secondary suspension, Csz, on the critical
hunting speed of the railway vehicle. (Note that the track is assumed to have a radius of 6250m in both
cases.) It is observed that the critical hunting speed increases with an increasing value of Csz irrespective
of the creep model applied. It is also noted that the critical hunting speed evaluated via the linear creep
model is generally higher than that obtained from the nonlinear creep model. However, for low values
of Csz, the difference in the results obtained from the two creep models is very small. Fig. 11(b) shows that for
a given value of Csz, the critical hunting speed increases with an increasing track radius. In addition, it is
observed that for a track radius greater than 6250m, the critical hunting speed reduces with an increasing
value of Csz.
5. Conclusions

This study has utilized a heuristic nonlinear creep model to analyze the dynamic behavior of a high-speed
railway vehicle during curving. The dynamics of the railway vehicle have been fully described utilizing
a 21-DOF model comprising the lateral displacement and yaw angle of each wheelset, the lateral displacement,
vertical displacement, roll angle and yaw angle of the truck frame, and the lateral displacement, vertical
displacement, roll angle, pitch angle and yaw angle of the car body. The effects of the major system
parameters on the hunting stability of the railway vehicle have been examined utilizing reduced dynamic
models with 6-, 14- and 20-DOF, respectively. The 20-DOF model is obtained by excluding the nodding
motion of the car body (i.e. the pitch angle) from the 21-DOF model, while the 6-DOF and 14-DOF models
are obtained by excluding further system parameters from the full model, most notably those relating to the
vertical stiffness and vertical damping of the secondary suspension. The respective effects of the various
physical parameters on the critical hunting speed of the railway vehicle have been analyzed using the
Lyapunov indirect method presented in Ref. [15]. The validity of the analytical modeling approach and
the numerical solution procedure has been compared by comparing the results obtained using the 6-DOF
dynamic model for the critical speed of a railway vehicle traveling on a straight track with the results presented
in the literature [19].

Overall, the results have shown that in the majority of cases, the critical hunting speeds evaluated for the
railway vehicle during curving via the 6-DOF and 14-DOF dynamic models are higher than those obtained
from the 20-DOF model. In addition, the critical hunting speeds obtained using the heuristic nonlinear creep
model are generally lower than those obtained from Kalker’s linear creep model [16]. Comparing the results
obtained from the 14-DOF model and the 20-DOF model, respectively, it has been shown that the critical
hunting speed evaluated via the nonlinear creep model may be over estimated if the vertical displacements and
roll angles of the truck frame and car body are not considered. The results obtained using the 20-DOF model
have shown that the critical hunting speed first decreases and then increases with an increasing vertical
stiffness of the secondary suspension Ksz. By contrast, the critical hunting speed increases continuously with
an increasing vertical damping of the secondary suspension, Csz, provided that the track radius does not
exceed a value of R ¼ 6250m. Finally, for constant values of Ksz and Csz, the critical hunting speed increases
with an increasing curve radius.
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Appendix A. System parameters [20,21]
Parameters
 Value
Wheelset mass
 mw ¼ 1117:9 kg

Bogie frame mass
 mt ¼ 350:26 kg

Car body mass
 mc ¼ 8041:3 kg

Roll moment of inertia of wheelset
 Iwx ¼ 608:1 kgm2
Spin moment of inertia of wheelset
 Iwy ¼ 72 kgm2
Yaw moment of inertia of wheelset
 Iwz ¼ 608:1 kgm2
Roll moment of inertia of bogie frame
 I tx ¼ 300 kgm2
Yaw moment of inertia of bogie frame
 I tz ¼ 105:2 kgm2
Roll moment of inertia of car body
 Icx ¼ 14 270 kgm2
Yaw moment of inertia of car body
 Icz ¼ 123 760:5 kgm2
Wheel radius
 r0 ¼ 0:43m

Half of track gauge
 a ¼ 0:7175m

Wheel conicity
 l ¼ 0:05

Half of primary longitudinal spring arm
 b1 ¼ 1:0m

Half of primary longitudinal damping arm
 b1 ¼ 1:0m

Half of primary vertical spring arm
 b1 ¼ 1:0m

Half of primary vertical damping arm
 b1 ¼ 1:0m

Half of secondary longitudinal spring arm
 b2 ¼ 1:18m

Half of secondary longitudinal damping arm
 b3 ¼ 1:4m

Half of secondary vertical spring arm
 b2 ¼ 1:18m

Half of secondary vertical damping arm
 b3 ¼ 1:4m

Half of primary lateral spring arm
 L1 ¼ 1:28m

Half of primary lateral damping arm
 L2 ¼ 1:5m

Longitudinal distance from wheelset center of gravity to car body
 Lc ¼ 4:2m

Vertical distance from wheelset center of gravity to secondary suspension
 hT ¼ 0:47m

Longitudinal stiffness of primary suspension
 Kpx ¼ 9� 105 N=m

Lateral stiffness of primary suspension
 Kpy ¼ 3:9� 105 N=m

Vertical stiffness of primary suspension
 Kpz ¼ 6� 105 N=m

Vertical damping of primary suspension
 Cpz ¼ 4� 104 N s=m

Longitudinal stiffness of secondary suspension
 Ksx ¼ 3:5� 104 N=m

Lateral stiffness of secondary suspension
 Ksy ¼ 3:5� 104 N=m

Vertical stiffness of secondary suspension
 Ksz ¼ 3:5� 105 N=m

Longitudinal damping of secondary suspension
 Csx ¼ 3:2� 104 N s=m

Lateral damping of secondary suspension
 Csy ¼ 1� 104 N s=m

Vertical damping of secondary suspension
 Csz ¼ 4� 104 N s=m

Lateral rail stiffness
 Kr ¼ 1:617� 107 N=m

Flange clearance
 d ¼ 0:00923m

Lateral creep force coefficient
 f 11 ¼ 2:212� 106 N

Lateral/spin creep force coefficient
 f 12 ¼ 3120Nm2
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Spin creep force coefficient
 f 22 ¼ 16N

Longitudinal creep force coefficient
 f 33 ¼ 2:563� 106 N

Radius of curved tracks
 R ¼ 6250m

Superelevation angle of curved track
 fse ¼ 0:0873 rad

Axle load
 W ¼ 5:6� 104 N

Coefficient of friction
 m ¼ 0:2

Normal force acting on wheelset in equilibrium state
 N ¼W=2N
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